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The Role of S-Shape Mapping Functions in the S|MP Approach 
for Topology Optimization 
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Initiatives Center Jbr Multiscale Design Seoul National Universio', 
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T h e S I M P  (solid isotropic material with penalization approach is perhaps the most popular 

density variable relaxation method in topology optimization. This method has been very 

successful in many applications, but the optimization solution convergence can be improved 

when new variables, not the direct density variables, are used as the design wtriab[es. In this 

work, we newly propose S shape functions mapping the original density variables nonlinearly 

to new design variables. The main role of S-shape function is to push intermediate densities to 

either lo,~er or upper bounds. In particular, this method works well with nonlinear mathema- 

tical programming methods. A method of feasible directions is chosen as a nonlinear mathema- 

tical programming method in order to show the effects of the S-shape scaling function on the 

solution convergence. 
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I. Introduct ion 

Since the work by Bendsoe and Kikuchi (1988) 

for topology optimization, the interest in topo- 

logy optimization has dramatically grown and 

been used in many engineering areas. See Bendsoe 

and Sigmund (2003). In many topology optimi- 

zation problems, optimality criteria methods have 

been popular as an efficient optimizer, but there 

has been a growing interest in using nonlinear 

mathematical programming (NLP) methods. One 

motivation to adopt mathematical programming 

methods is to deal more effectively with compli- 

cated objective functions, multiple constraints, 

and others. For instance, SLP (sequential linear 

programming) was used by Sigmund 1997), 
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Duysinx (1997), Yang et a1.(1994), Nishiwaki et 

a1.(1998), Fujii and Kikuchi (2000), and Yang 

and Chuang (1994). The motivation of this work 

is to find a method which can significantly im- 

prove the convergence speed of the NLP for 

topology optimization problems. 

In topology optimization, intermediate values 

of density design variables must be avoided to get 

clear images of optimized structures. The most po- 

pular method in the topology optimization com- 

munity is the SIMP (solid isotropic material with 

penalization) method (Sigmund and Petersson, 

1998, Zhou and Rozvany, 1991), which is known 

to yield quite satislhctory results if the penaliza- 

tion parameter is chosen properly. (See Bendsoe 

and Sigmund, 1999 for the role of the penaliza- 

tion parameter.) Nonetheless, the convergence of 

topology optimization by mathematical program- 

ruing may be substantially enhanced if intertne- 

diate densities appearing during optimization 

iterations are controlled effectively. The objec- 

tive of this work is to present a new method to 

handle intermediate densities better and thus to 

accelerate solution convergence. In this work, we 
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employ a method of feasible directions (MFD) 

(Vanderplaats, 1984 : Vanderplaats 1999 ; Arora, 

1989) as a nonlinear mathematical programming 

method; we choose this method because it con- 

sists of typical procedures such as the direction 

finding step and the one-dimensional search 
step. 

When the SIMP method is employed, the stiff- 

hess of an elastic body behaves as me" where me 

(0< me_.< I) is the element density defined by the 

design variable, and / 1 is the penalization factor 

(in the present work, we use ,u=3 unless stated 

otherwise). In the case of compliance minimi- 

zation problems, the objective sensitivity is pro- 

portional to the stiffness sensitivity that behaves 

simply as me "-~. Since the stifihess sensitivity in 

the SIMP model monotonically increases as me 

grows from 0 to 1, the maximum stiffness sensi- 

tivity occurs at me=l.  However, it is desirable to 

have higher sensitivities near intermediate densi- 

ties (me=0.5), since intermediate densities should 

be avoided in final optimized results. This moti- 

vates the modification of the stiffness sensitivity 

field such that the resulting sensitivity field has 

higher values near me=0.5. 

The straightforward multiplication of the ob- 

jective sensitivity field by some nonlinear func- 

tions may work, but it lacks any theoretical justi- 

fication. Instead, we propose to change design 

variables ; the stiffness sensitivities with respect to 

new design variables have the desired sensitivity 

field near pe=0.5. To achieve this goal, we pro- 

pose an S-shape function mapping from the orig- 

inal density design variables to new design varia- 

bles. Because the S-shape function scales the 

original design variables nonlinearly, this func- 

tion will be called the scaling function. The effect 

of using the new design variables in topology 

optimization is equivalent to modifying the sensi- 

tivity field formulated by the direct density varia- 
bles. 

A similar S-shape function was introduced by 

Kim and Yoon (2000) in topology optimization. 

The S-shape function was employed for multi- 

scale multiresolution topology optimization where 

its primary use was to eliminate the side constr- 

aints imposed on density variables. Later, Poulsen 

(2000) employed a similar S-shape function for 

the same purpose. In the present work, however, 

a new S shape function is designed in order to 

change the sensitivity field, not to eliminate side 

constraints. Indeed, the upper and lower bounds 

for new design variables are exactly the same as 

those of the density design variables. 

The main effect of using the S-shape function 

in MFD manifests itself in one-dimensional 

search; this will be clearly seen by a model 

problem as well as actual topology optimization 

problems. Another effect is to reduce substantially 

the magnitude of the components of the search 

direction vector when the corresponding design 

variables approach the lower or upper bound. 

In this case, the search direction modification 

scheme can be employed (see Vanderplaats, 1984: 

Vanderplaats, 1999) so that the next design itera- 

tion can be focused on design variables that are 

not close to the lower or upper bound. To find an 

appropriate scaling function, some requirements 

that nonlinear scaling functions must satisfy are 

also carefully investigated. 

2. Topology Optimization Problem 
Statement 

In this work, we will be mainly concerned with 

minimum compliance problems for two- and 

three-dimensional isotropic linear elastic struc- 

tures in Bendsoe and Kikuchi (1988), Bendsoe 

(1995), Hassani and Hinton (1998a-c). Consi- 

dering a discretized finite element model of an 

elastic structure, the topology optimization prob- 

lem may be stated as 

Minimize 

L ( p )  = U r ( p )  F = U ~ ( p ) K ( p )  U(p)  (I) 

subject to 

N N 

H (p) -- ~, m e -  Mo='~, meve- Mo~O (2) 
e = l  e = l  

with 

pT=( pe}={ pl, p2,-.., raN} 

The compliance L depends on the values of 

element densities ,o that are subject to the side 
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constraints given by 

0 < p e < l  ( e = l ,  2, 3, ..., N) (3) 

In Eq. (1), K,  U and F denote the stiffness 

matrix of a discretized elastic structure, the nodal 

displacement vector and the force vector. In Eq. 

(2), 11//0 represents the upper bound of the total 

mass of the elastic structure where Ve is the vol- 

ume or area of each finite element. The element 

density Pe is assumed constant within an element 

and N denotes the total number of finite elements. 

The total stiffness matrix K ( p )  of an elastic 

body may be given by means of element-level 

expressions 

N 

K (p) =52, Ke(pe) 
e - t  (4) 

=e~=lf , a~B[ C (oe) Bed£2 

The strain interpolation and constitutive matrices 

are denoted by B~ and C which may be found in 

any standard finite element textbook. To express 

the constitutive matrix C as a function of the 

element density, we employ the SIMP model 

(Bendsoe, 1989): 

E =  E (pe) = p~Eo (5-a) 

u=uo (5-b) 

me=peVe (5-C) 

where E0 and u0 are Young's modulus and Pois- 

son's ratio of a base elastic material, respectively. 

The element mass me is the product of the ele- 

ment density Pe and the uniform element volume 

ve. In the case of plane stress problems, the 

constitutive matrix C is written as a function of 

/0 e a s  

E(pe) 
C ( p e ) -  l - ~ Z  1 lJ 1 0 

0 0 1 ~ ,  
(6) 

3. M e t h o d  of  Feas ib le  

D i r e c t i o n  as  an Opt imizer  

As stated in Introduction, we will use the 

method of feasible direction (MFD) as a mathe- 

matical programming method. Unlike sequential 

linear programming methods, this method can 

deal directly with problem nonlinearity. Although 

MFD can effectively handle multiple constraints, 

we simply work here with well-know compliance 

minimization problems having one mass con- 

straint. Detailed accounts of this method are well 

summarized by Vanderplaats (1999). In typical 

mathematical programming methods including 

MFD, the updating scheme is 

pnew = po~a + ad p (7) 

In MFD, the search direction d o is first deter- 

mined and then a scalar a is found by a con- 

strained one-dimensional search. 

The direction finding subproblem can be writ- 

ten as (see Vanderplaats, 1999) 

Minimize /3 (8-a) 

l A°Lrdp ~/~ (8-b) 
subject to [ ApHVd~,~t~ 0 (if H is active) 

dpXd'_< 1 (8-c) 

where 0 is a push-off factor. We use the symbol 

p in the gradient operator ~7 and the direction 

vector to emphasize that the design variables are 

t9. The subproblem formulated as Eq. (8) can be 

solved either by a linear programming method or 

a modified conjugate gradient method. The one- 

dimensional constrained search may be performed 

by either polynomial approximation or the golden 

section method. 

To provide the gradient information of L and 

H for the subproblem, the sensitivities of L and 

H with respect to the eth design variable Pe are 

needed: 

3L _ - r OK~ Ue (9) 
OPe Ue Ope 

and 

OH 0me 
a p e - -  0,oe =Ve (10) 

Referring to Nishiwaki et a1.(1998) and Fujii 

and Kikuchi (2000), one can easily see that the 

sensitivity OL/Ope depends on OE/ape. Since the 

search direction d p in Eq. (8) is affected by the 

gradient VoL anaong others, it is worth examining 
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Fig. 1 The behavior of E (Young's Modulus or the 

Stiffness) and dE/dOe as a function of Pe 
(the penalization factor ¢z is set to 3) 

the behavior  of  OL/Ope as a function of  Pe. 
Fig. 1 plots E(toe) and aE(pe)/Otoe as functions 

of  the design variable toe. Since OH/atoe is in- 

dependent  of  the design variable toe, there is no 

need to examine the effect of  VoH. 
Although  the objective sensitivity OL/Ope de- 

pends not only on aE(pe)/Otoe but also on Ue 
(see Eq. (9)) ,  some important  observations can 

be drawn from Fig. 1. In topology optimizat ion,  

intermediate densities variables should not ap- 

pear in final opt imized results. If  the sensitivity 

values near pe=0 .5  were larger than those near 

p e = 0 . 0  or  Pe= 1.0, the faster convergence might 

be achieved. If this is the case, the direction vector 

components  corresponding to intermediate densi- 

ty values would become larger and thus interme- 

diate densities would  move quickly towards the 

upper or lower bound. 

In carrying out a one -d imens iona l  search, the 

maximum step of  a is determined from 

O =  l ota p u __  N e )  (11) to~--toe +ad~ <-pe--I ( e = l ,  ..., 

If  the maximum step is limited because some of 

side constraints become critical, the correspond-  

ing components  of  the direction vector d p may 

be set to zero. This is equivalent  to imposing 

8L/atoe=O near toe=toLe or pe=toUe, giving a 

better search direction (see Vanderplaats,  1984; 

Vanderplaats,  1999). Therefore,  this strategy can 

be strengthened, if the sensitivity is set to be very 

small as to approaches either p~ or toe v. 

4. Introduction of an S-Shape 
Scaling Function 

Having the motivat ion for the sensitivity field 

modif icat ion discussed in the previous section, 

we reconsider topology opt imizat ion using other 

design variables than the direct density variables, 

To this end, we examine the SIMP model  in a 

general lbrm : 

tOe(X)--A(~e(x))too (to0--1) (12-a) 

Ee(x) =O ( ~e(x) ) Eo (12-b) 

Here, the design variables are ~ee and those are 

also restricted to satisfy the same side constraint  

as that for the density variables : 

0--<~e--<l (13) 

In choosing the functional form of A(~  e) and 

0(~) ,  we also impose the tbl lowing condi t ions  

A ( 8 = 0 )  = 0 ,  A ( ~ e = l )  =1  (14-a) 

O(~e=0)  = 0 ,  O ( ~ = 1 )  =1  (14-b) 

As long as A ( ~ )  and O(~)  satisfy Eq. (14), any 

monotonica l ly  increasing functions of  e can be 

candidate functions for A(~  e) and O(~e). How- 

ever, it would be desirable that the p - E  relation 

can satisfy the Hashin Shtr ikmann condi t ion  (see 

Hashin and Shtrikman, 1963). To  this end, we 

choose O(~ee) as 

o(~e) --[A(&)]" (15) 

where /l is a real number,  l f E q .  (15) is used, the 

density-stiffness relation of  this model  is exactly 

the same as the one used in the standard SIMP 

mode l :  

p " E=(to0 ) /,6) 
In the subsequent discussions, we will call A(~  e) 

the scaling function. 

Now we consider  how the sensitivity field is 

affected if Eqs. (12) and (15) are employed.  Ex- 

pressing the objective function [ ,  and /~r as a 

tunction of  ~ee 
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with 

[.(8) =L(A 8)) 

H ( 8 )  = H ( A ( 8 ) )  

(17) Minimize 

(18) subject to 

8={  ~ } r = {  ~,, &, "", ~N }r (19) 

the sensitivities of /[ and /q with respect to 6, 

become 

{ V[`rd*_<fl 
v /}rd*_<fl0  

d~T'd~< I 
8,e='= 8oza + ad ~ 

5 .  N u m e r i c a l  S t u d i e s  

(24) 

and 

d[` 3A (~%) aL In this section, we will examine the effect of the 

S-shape scaling function on the optimization 

process. 

d t _  OA(&) OH 
O~e O~e (~lOe ( 2 l ) 

Eqs. (20) and (21) show that the sensitivities of 

the original objective function and the constraint 

can be controlled by OA/~?~ee. 

In order to reflect the observations made in the 

previous section in designing A(~e), we propose 

to use the following criteria : 

I. A ( ~ = o ) : 0 ,  A ( ~ : o . 5 ) = 0 . 5 ,  (22-a) 
A ( 4  = 1) = l 

I I .  A(,• e) + A ( I - ~ )  =1 (22-b) 

111. OA/O~ee has the maximum at ~e=0.5 (22-c) 
and the minimum at ~=0.0  and 1.0 

Criterion I is basically the condition given by 

Eq. (14) except for A(0.5)=0.5.  Similarly Cri- 

terion II ensures that the derivative of A(~) with 

respect to ~=0.5 is symmetric, which emphasizes 

sensitivity unbiasedness towards ~=0 .0  or ~ =  

1.0. Criterion II1 states the observations made in 

Section 3. 

With these criteria in mind, the following 

scaling function is proposed 

5.1 M o d e l  problem 

To illustrate the effect of the scaling function 

o,1 the performance of MFD, a simple model 

problem is first considered. Fig. 2 shows a system 

consisting of a rigid block and two elastic springs. 

The objective is to minimize the compliance of 

the system : 

1 1 
Minimize L K r  - KI + Kz (25) 

To simulate the topology optimization, we set 

KI=2Kop~, K2=A%~p~ (Ko=l)  (26) 

where the design variables Pl and p2 are subject 

to 

H(Ol ,  02) = P l + P 2  <- 1 (27-a) 

0_<p~<_l, 0-<p2-< 1 (27-b) 

Eq. (27-a) may be viewed as a mass constraint. If 

the compliance L is regarded as a function of Pl 

and 02, Eq. (25) can be written as 

I 
Minimize L(O1, p2) - ,, 2 2 (28) 

.~ pl + p~, 

1 
A(8) - (23) 

1 + e x p ( - s ( a S - b ) )  

where s, a, b are some parameters. Unless stated 

otherwise, we use s=0.3,  a=60 ,  b=30.  The 

effects of different values of the parameter on the 

solution convergence will be discussed in the next 

section. To clarify the effects of the scaling func- 

tion, we write explicitly the direction finding sub- 

problem fornaulated by new design variables ~e: 
Fig. 2 

K 2 

t I I 

KI 

F = I  

A model system consisting of a rigid block 
and two elastic springs 
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Table  1 One iteration in MFD lot a model problem in Fig. 2 
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METHOD 

Design Variables 

Initial Values 

L olu, H ota 

Conventional  I Present 

iOl, P 2  

pOta= (0.5, 0. I) r 

1.9608, --0.4 

New Values ,o "ew= (0.86364. 0.13636) T 

L "~w, H ~ 0.0621. 0 

8om= (0.5, 0.37793) r 
[¢o,a=A :(po~) ] 

1.9604, --0.4 

/~new= (0.1783, 0.38217', 7 

[ p " ~ " - A (  ~,¢w~ = ~0.89292, 0.10708;] 

0.62263, 0 
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(b) 

Fig. 3 Old and new design points plotted on the 

contour plane tbr (a) L ( p i  pa) and (b) L 

(~t, ~2) (the design variables used for (a) and 

(bl are (pi, p2) and (~t, ~z), respectively) 

One  can ana ly t ica l ly  find the op t imal  so lu t ion  as 

Cp2 = 1 ,  p 2 = 0 ) .  

Assuming  that  the ini t ial  values of  the design 

var iables  are (pP~a=0.5, p~ ' la=0.1) ,  equivalent ly ,  

( ~ f ,a=d-1  (p~a) =0 .5 ,  ~Ua=A -1 ( p~ta):0 .3779 3) , 

we cons ider  two op t imiza t ion  processes of  M F D .  

the conven t iona l  one  with (p~, P2) and the present 

one with (~,, ~z). Tab le  I compares  the detai led 

one step upda t ing  process of  the conven t iona l  

and  the present  app roach  in M F D  and Fig. 3 

plots  the old and new design points  by the two 

methods.  First, we can see that  the compl i ance  by 

the present  S - shape  method  is better  than that  by 

the conven t iona l  method.  Second,  the updated  

densi ty values by tile present  method  are closer 

to the lower or upper  bound .  The  differences in 

these values du r ing  one step are not so signifi- 

cant,  but  the accumula ted  effects on so lu t ion  

convergence  are quite significant .  This  will be 

clearly seen in the actual topology op t imiza t ion  

process. 

5.2 E f f e c t s  o f  the  p a r a m e t e r s  o f  S s h a p e  

f u n c t i o n s  

The effects of  parameters ,  (i.e. s, a and  b of  

S - shape  funct ions)  on so lu t ions  are also examin-  

ed. Fig. 4 shows A ( ~ )  and  3 A ( ~ ) / a ~  e for differ- 

ent values of  s. If s becomes too small,  o~A(~) /3~  

may become very small  in a cons iderab ly  large 

range of  ~e. On the o ther  hand .  the sensit ivi ty at 

~ = 0 . 5  becomes too flat if s becomes too large. 

Therefore,  no good result  is expected in ei ther  ex- 

treme. Several numer ica l  tests have suggested that  

the best results are ob ta ined  with s = 0 . 3 .  (This  

value is also numer ica l ly  tested and  adopted  in 

Kim and Yoon  (2000).)  However,  the opt imized 

results are not  so sensi t ive to the choice of  a and 

b (We use a = 6 0 ,  b = 3 0  and s : 0 . 3  for all nu- 

merical  results given here.) .  

5.3 O n e - s t e p  u p d a t e  for t o p o l o g y  o p t i m i z a -  

t ion  

Here we carry out  a one - s t ep  upda te  by M F D  
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1 

" . . . . . . . - i / ] .  -=:- 
- - -  ,:0, "" L.L 

o~ S:0.2 
S:0.3 

04 / ,  ~ J "  
/ : " . 

)2 [ ~ - ' * "  ," 

0 r5 .~ I 

(a) 

!; dA 

.~ - -  S=0.3 / . . . . . , . . ~  

(b) 

Fig. 4 (a) S-shape scaling functions and (b) the 

derivative of the S shape scaling functions for 

various values of s 

fbr topology  op t imiza t ion .  The  compl i ance  mini -  

miza t ion  in cons ide ra t ion  is i l lustrated in Fig. 5 

where the vertical force is appl ied at A. The  

design d o m a i n  is d iv ided by 8 × 8 finite elements.  

In all numer ica l  ca lcula t ions ,  we use t o u r - n o d e  

b i l inear  finite e lements  and employ  the fi l tering 

me thod  (S igmund  and Petersson,  1998) to con-  

trol the t b r m a t i o n  of  checke rboa rd  patterns.  

To i l lustrate  the effects of  the S - s hape  funct ion  

for the upda t ing  process, we choose  a densi ty  

d i s t r ibu t ion  at a cer ta in  design i tera t ion stage as 

a cur ren t  (old) densi ty  d i s t r ibu t ion .  The  densi ty  

values at the old stage are wri t ten  on  each finite 

e lement  of  the discret ized design d o m a i n :  see 

Tab le  2 for the numer ica l  values and  Fig. 6 for 

the co r r e spond ing  image. Once p~ ( e =  1, -.., N~) 

are k n o w n  at the old stage, the c o r r e s p o n d i n g  ~e 

can be easily found using ~ e = A - a ( p e ) .  There-  

fore, we will not list the va lue  of  ~ at the old 

Om 

/ 

Fig. 5 Design domain with one side clamped (L = 

16m. H = 1 0 m ,  E = 2 0 0 × I 0  s Pa, ,;, 0.3, 

mass conslraint=37.5~o 60 /160) )  

Fig. 6 The density distribution at the current (old) 

stage 

stage. Tab le  3 summar izes  the resuh ob ta ined  

al ter  a one - s t ep  i terat ion in M F D  by the conven-  

t ional  and present method.  

Tab le  3 clearly shows the advan tage  of  the 

present  app roach  work ing  with new design wiria- 

bles scaled by the S - shape  funct ion.  The  object ive  

value  by the present  method  is lower than  that  by 

the conven t iona l  method.  Fu r the rmore ,  the num- 

ber  of  in te rmedia te  densi ty  var iab les  is reduced 

subs tan t ia l ly  by the present  me thod  (see N(pint )  

in Tab le  3). To show the deta i led process, the 

search d i rec t ions  (d p and d e) by the conven t iona l  

and  present  app roach  are listed in Tab les  4 and 5. 

The  search d i rec t ions  d p and d e are t abu la ted  

in Tab les  4 and 5, respectively. To ob ta in  the res- 

ults in these tables,  Eqs. (8) and  (24) are solved, 

first. Then  the c o m p o n e n t s  of  the search direc- 

t ions are set to zero if the c o r r e s p o n d i n g  design 

var iables  reach the side const ra ints .  To see the 

effect of  the present  n o n l i n e a r  scal ing funct ion,  
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Table 2 The distribution of the density (Pe) (the cell location in this table stands for the element location in 

the design region hown in Fig. 5) 

1 0.8693 0.6159 0.4086 0.2313 0.1004 0.0304 0.0108 

0.5371 0.5127 0.3699 0.2666 0.187 0.1237 0.0649 0.0189 

0.2127 0.2483 0.2204 0.1863 0.1679 0.1508 0.1116 0.0447 

0.0772 0.1282 0.1407 0.1388 0.1443 0.1582 0.1574 0.1025 

0.0774 0.1267 0.1341 0.1224 0.1148 0.1305 0.1789 0.2139 

0.2131 0.2453 0.2081 0.1553 0.1087 0.0808 0.1444 0.4145 

0.5362 0.5111 0.3666 0.258 0.1685 0.093 0.0523 0.7679 

1 0.8664 0.6233 0.4399 0.3019 0.2253 0.2495 l 

Table 3 One iteration in MFD for the design problem depicted in Fig. 5 (the number of intermediate densities 

lying between 0.35 and 0.65 at the new stage is denoted by N(plnt) 

METHOD Conventional Present 

Design Variables 0 

L TM, H °~a 7.91M 104, 15.33 7.91X l04, 15.33 

L new, H new 1.43x 104 , 0 1.36x 104, 0 

N(plnt) at new stage 23 13 

Table 4 The search direction d p at the density distribution given by Table 2 by the conventional approach (the 

magnitude of each cell represents the components of d p at the corresponding element location in the 

design domain) 

0.0000 0.0223 0.0371 0.0669 0.1360 0.1849 0.0494 0.0035 

0.0173 0.0101 0.0158 0.0804 0.3934 0.7000 0.2828 0.0144 

0.0115 0.0068 0.0195 0.0882 0.4329 1.0000 0.6100 0.0511 

0.0031 0.0170 0.0444 0.0712 0.2048 0.7536 0.8338 0.1169 

0.0030 0.0209 0.0519 0.0837 0.1198 0.3337 0.7025 0.1269 

0.0064 0.0059 0.0167 0.0612 0.2033 0.2658 0.3784 0.0391 

0.0089 0.0062 0.0096 0.024 0.0974 0.4013 0.0903 0.0086 

0.0000 0.0179 0.0415 0.1129 0.3414 0.6377 0.4431 0.0000 

Table 5 The search direction d ~ a t the  density distribution given by Table 2 by the present approach (compare 
this results with those in Table 4) 

0.0000 0.0199 0.0688 0.1268 0.1892 0.1230 0.0110 0.0002 

0.0338 0.0198 0.0288 0.1231 0.4677 0.5917 0.1328 0.0020 

0.0151 0.0099 0.0262 0.1045 0.4726 1.0000 0.4711 0.0167 

0.0017 0.0148 0.0419 0.0664 0.1974 0.7840 0.8637 0.0837 

0.0017 0.0180 0.0471 0.0701 0.0949 0.2954 0.8066 0.1669 

0.0084 0.0085 0.0216 0.0627 0.1534 0.1532 0.3649 0.0743 

0.0173 0.0122 0.0174 0.0360 0.1067 0.2632 0.0345 0.0120 

0.0000 0.0163 0.0765 0.2181 0.5637 0.8711 0.6497 0.0000 
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we examine the components  of  the search direc- 

tion vectors corresponding to intermediate den- 

sity values. Consider  the elements at cell loca- 

tions (1, 4) and (8, 4) in Table  2 that have in- 

termediate density values of  pe=0.486, pe--0.4339. 

The search direction components  lbr these 

elements differ considerably depending on the 

method employed : 

dP( l ,  4) =0.0669 ; d° (8 ,  4) =0.1129 

d~( l ,  4) =0.1268 ; d~(8, 4) =0.2181 

Since the magnitude of  the maximum component  

of  d ~' and d ~ is set to 1, the effects of  the change 

in these components  are quite significant. 

5.4 Verification examples  
To verily the convergence improvement  achiev- 

ed by the use of  the present S shape scaling func- 

tion, several benchmark problems are considered. 

For  the numerical  implementat ion of  M F D ,  the 

push off factor 0 is taken by 0.1. For  the conver-  

gence check, we set thc absolute change by 0.0001, 

(a) 

the relative change by 0.0001 and the K T condi-  

tion by 0.001. The convergence criteria are check- 

ed over five successive iterations. 

5.4.1 Verification problem 1 
As the first verification problem, we consider  

the compl iance  minimizat ion problem depicted in 

Fig. 5 in which a vertical force of  magni tude 1000 

N is applied at A. The opt imizat ion results by the 

convent ional  and present approach are shown in 

Fig. 7. The opt imizat ion histories are also plotted 

in Fig. 8. The rapid convergence by the present 

approach is well demonstrated by this example ;  

the number  of  iterations by the present approach 

is only Ni te r=32 while that by the convent ional  

approach is as many as N a e r = 2 6 6  for the same 

convergence criteria. 

200 

0 

O b j e c t  

Conventional 
- - Present 

30 (~ 90 

C o n s t a ' a l n t  
25 

120 130 

I t e r a t i o n  

(a/ 

I:gl~ 210 2~0 

Fig. 7 

(b) 

The optimized result (a) by the convention- 
al approach (Niter=266, L 144.1893, H - -  
0.00394) and (b) by the present approach 
(Hirer=32, L =  143.044, H=-0.000124)  (the 
design domain is discretized by 2048 finite 
elements.) 
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I t e r a t i o n  
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The iteration histories for the results shown in 

Fig. 7 : (a) the objective function and (b) the 

constraint function 
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(a) 

Fig.  9 

Object 
1000 r 

~oo t ''} 
8O0 

7oo ~:I 
6oo I~ 
500 r~ 

I 

3UO 

200 - 

100 
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The optimized result (a by the convention- 

al approach (N;t~r=62. L=130.6426. H =  ~J 

0.002975) and (b) by thc present approach Lo 

(N~te,.=25, L= 126.1733, H 0.00009o) 

(the design domain is discretized by 2048 :' 

finite elements.) o ~: 

5 . 4 . 2  V e r i f i c a t i o n  p r o b l e m  2 

We nov,' consider  the compliance minimizat ion 

problem for a vertical load applied at the center 

of  thc side edge denoted by C. The results are 

shown in Figs. 9 and 10. Again the rapid conver-  

gence is achieved by the prcsent method working 

with the design variables scaled by the present 

S-shape function. As the initial distr ibution for 

this numerical  example, we set p~ by 0.5 for both 

the density method and the present method. With 

the different initial guesses, we have also obtained 

the rapid convergence by the present method. 
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l t trat ion 

(b~ 

The iteration histories for the resuhs shown 

in Fig. 9 : (a) the objective function and (b) 

the constraint function 

lues were effectively handled by the present S- 

shape ['unction method. 

R e f e r e n c e s  

6. C o n c l u s i o n s  

The topology opt imizat ion was carried out 

efficiently by working with new design variables 

mapped from the direct density variables via an 

S-shape scaling function. The convergence im- 

provement  by the present method applied to non- 

linear programming was illustrated by several 

numerical  examples. The reason lot  the conver-  

gence speedup was investigated by studying the 

details of  a one step iteration process. This in- 

vestigation showed that intermediate density va-  
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